

PLASTIC SHRINKAGE

SYNOPSIS

- During the injection molding process, after molten resin is injected into the mold, it begins to cool and harden. As it does, the part experiences volumetric contraction or shrinkage (i.e., a reduction in size), which can continue for hours or even days, depending on material type and atmosphere.
- All polymers experience shrinkage. Crystalline materials tend to shrink more, and amorphous materials tend to shrink less.
- The expected shrinkage rate must be considered when designing parts, building molds, and establishing the molding process, particularly for parts requiring tight tolerances.
- Shrinkage associated with excessive or differential wall thickness can result in sink marks, voids and part warpage. Multiple processing parameters can affect shrinkage, too.
- The following chart contains the typical shrinkage rates for the most common types of thermoplastics.

MATERIAL	TYPICAL SHRINKAGE (in/in)	MATERIAL	TYPICAL SHRINKAGE (in/in)
ABS	0.005	PEI [Ultem]	0.006
ASA	0.004-0.007	PET [Dacron]	0.002
EVA	0.007-0.020	PMMA [Acrylic]	0.002-0.006
HDPE [High Density Polyethylene]	0.025-0.035	POM [Acetal; Celcon; Delrin]	0.018-0.035
HIPS [High Impact Polystyrene]	0.003-0.007	PP [Copolymer]	0.010-0.025
LDPE [Low Density Polyethylene]	0.015-0.026	PP [Homopolymer]	0.010-0.025
LLDPE [Linear LDPE]	0.015-0.035	PPE	0.006
NYLON 6	0.009-0.012	PPS [Ryton]	0.003-0.010
NYLON 66	0.015-0.020	PS [Polystyrene; GPPS]	0.003-0.007
NYLON 66 30% Glass Filled	0.003-0.008	PVC	0.002
PBT [Polyester; Valox]	0.012-0.023	SAN	0.002-0.005
PC [Polycarbonate; Lexan]	0.005-0.007	TPE [Thermoplastic Elastomer]	0.017-0.047
PC+ABS	0.005-0.007	TPU [Thermoplastic Polyurethane]	0.012-0.017
PEEK	0.010-0.020	TPV [Santoprene]	0.010-0.050

Questions?

Contact us to speak with a consultant \rightarrow 909-981-9662

PrecisionMoldedPlastics.com

DISCLAIMERS: The information provided herein is general in nature and is based upon estimates and readily available public information. Accordingly, this guide should be used only as a quick reference tool and as a starting point for conducting research, and users must perform their own studies and analyses. ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE, ARE EXCLUDED AND DISCLAIMED. Without limiting the generality of the foregoing, Precision Molded Plastics, Inc. assumes no responsibility or liability of any kind for this guide or for the information contained herein.